Visualization and Interpretation of Partial Discharges (PD)

  • June 28, 2025
  • 10 دقیقه مطالعه
Infographic explaining what partial discharges are, showing PD types, causes, and IEC 60270-compliant detection methods including electrical and UHF techniques

Visualization and Interpretation of PD Events

Visualization and Interpretation of Partial Discharge Events

This article explores advanced methods for analyzing partial discharge (PD) phenomena using oscilloscope traces, q(u) and q(t) plots, and statistical signal processing.

Introduction

Partial discharges are critical indicators of insulation deterioration in high voltage systems. For effective monitoring and diagnosis, graphical visualization of PD activity provides insightful trends and fingerprints.

q(u) Plot – PD Charge vs Test Voltage

The q(u) plot displays the measured PD charge as a function of the applied AC test voltage. It helps identify the inception voltage and the discharge activity phase angle within each voltage cycle.

q(u) plot - PD Charge vs Test Voltage
Figure 1: q(u) plot showing sinusoidal behavior of PD charge relative to test voltage.

q(t) Plot – PD Charge vs Time

The q(t) plot is used to track PD activity over a period of time. This is especially helpful in detecting intermittent or time-correlated discharges that do not depend solely on voltage amplitude.

q(t) plot - PD Charge vs Time
Figure 2: q(t) plot showing discharge activity variation over time.

Statistical Fingerprinting

To automate PD source identification, statistical comparison between measured signals and a database of known patterns (reference fingerprints) is used. If the similarity exceeds a threshold (e.g. 90%), the PD source can be confidently categorized.

Statistical Fingerprint for PD Identification
Figure 3: Statistical fingerprinting showing strong match between measurement and reference pattern.

Separation Techniques – 3CFRD

In cases where multiple PD sources overlap, the 3CFRD (Three-Component Frequency-Resolved Detection) method enables separation based on their distinct spectral signatures. This allows accurate localization and classification of each discharge.

Conclusion

Visualization methods such as q(u), q(t), and statistical fingerprinting significantly enhance the interpretation of PD events. When combined with frequency analysis tools like 3CFRD, engineers can accurately assess the insulation condition and predict potential failures.

© 2025 High Voltage Diagnostics | All rights reserved.

پیام بگذارید
مطالب مرتبط
تحلیل و تفسیر تصویری تخلیه جزئی

روش‌های نوین در پایش تخلیه جزئی: تلفیق تحلیل زمانی-فرکانسی و الگوریتم‌های آماری مطالعه حاضر چهارچوبی برای ادغام تکنیک‌های کلاسیک (نمودارهای فاز-بار) با روش‌های مدرن (پردازش سیگنال غیرخطی و یادگیری ماشین) را با تمرکز بر کالیبراسیون سیستم‌های اندازه‌گیری PD کاهش نویز با فیلترهای تطبیقی طبقه‌بندی خودکار نقص‌ها ارائه می‌دهد.

ادامه مطلب